A Retrospective Review of Two Years of Admissions to a Tertiary Intensive Care Unit for patients with a primary diagnosis of Burns.

By
Dr Juliette Mewton, Dr John Gowardman
Royal Brisbane and Women’s Hospital, Brisbane
ANZBA Conference 2018.
Quaternary Burns Centre for Queensland, Pacific Islands.

Who do we Treat?
- Epidemiology of our burns
- Admission demographics which might help predict outcome
- Analgesia
- Microbiology and screening
Admission Demographics

- Ninety-four admissions 2015/2016 (1 excluded on review of notes)
- Sex
 - Male 64 (70%)
 - 16 Deliberate self harm
 - 21 recreational substance use
 - Female 27 (30%)
 - 10 Deliberate self harm,
 - 1 forensic
 - 7 recreational drug use as a confounder
- Age Range 17-85 yrs (Median 43.65 Yrs)
- IHT or Direct – 41 Direct and 52 IHT (1 or 2 centres) – no statistical difference in mortality
- Recreational Drug use reported on admission – Yes 35.8% No 53 (64.2%)
- Primary Cause - Accidental 64 (70%) Deliberate Self Harm 26 (28.5%) Forensic 1 (1.5%)
- LOS 1-78 days (median 11 days)
Mechanism of Burn by Age

- Electrocution
- Flash
- Accelerant
- Self Immolation
- Fire
- Blast/flame

Age (years):
- 11-20
- 21-30
- 31-40
- 41-50
- 51-60
- 61-70
- 71-80
- >80

Number of Patients

- 0
- 2
- 4
- 6
- 8

Age (years) vs. Number of Patients
Gender and Age at time of Admission

Age (years)

<table>
<thead>
<tr>
<th>Age Range</th>
<th>% TBSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30</td>
<td>31-40</td>
</tr>
<tr>
<td>41-50</td>
<td>51-60</td>
</tr>
<tr>
<td>61-70</td>
<td>71-80</td>
</tr>
<tr>
<td>>80</td>
<td></td>
</tr>
</tbody>
</table>

Female

Male
TBSA with Gender for all Mechanisms of Burn

Difference between total body surface area (TBSA) between genders for all mechanisms of burn (p=0.0162)
Associated Inhalation injuries or Facial Burns

- Inhalation Injury - Yes 78 (86%)
- Facial Burns - Yes 77 (85%)
Mortality

- 17 deaths in total
 - Gender (not statistically significant)
 - 7 females 10 males
 - Intention – 7 DSH, 9 accidental, 1 forensic
 - Illicit Drugs 6 (35%)
 - Age – 100% mortality if age > 80yrs
 - TBSA - 84% Mortality if TBSA >80%
- Resuscitation
 - If Parklands Resus 10-20L 25% mortality
 - If >20L 50% mortality
 - No correlation between vasopressors and mortality
- Modified Beaux Score
 - 9 score <140, 8 score >140
 - Not predictive of mortality in this cohort
- Biochemistry
 - pH and Temp strongly associated with mortality but not
 - Lactate
Deaths by % TBSA

- >80%: 5 deaths, 3 patients
- 60-80%: 6 deaths, 7 patients
- 40-60%: 1 death, 15 patients
- 20-40%: 1 death, 21 patients
- <20%: 0 deaths, 30 patients

Legend:
- Green: Death
- Blue: Number of patients
Age on Admission and Mortality

- <20 yrs
- 20-30yr
- 30-40
- 40-50
- 50-60
- 60-70
- 70-80
- >80

Number of Admissions

Deaths
% Parklands resuscitation per Mechanism

Mechanism of Injury

Electrocution
Flash
Accelerant
Self Immolation
Fire
Blast/flame

% Parklands

-400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000
Fluids

- 41 (48%) patients did not have accurately recorded fluid balances prior to ICU admission
- 68 pts (73%) with fluids recorded had more than their calculated parklands in the first 24 hours of resuscitation.
- Lack of good data on actual BW and height. Likely underestimated
- If your Parkland Calculation was
 - >15L -20L – 25% mortality
 - >20L- >50% mortality rate
 - >30L 50% mortality. 1 patient had 46,200mls and survived!
- Multiple fluids used in Resus
 - Crystalloids – Hartmanns/N saline
 - Colloids – 4% albumin, 20% albumin, PRC and other Blood products
 - Significant variation between clinicians in their fluid of preference
- Mortality
 - 10 Pts more than their estimated Parklands
 - 6 Pts less
Vasopressors

• No statistical significance between use or number of vasopressors and mortality
 • 43 patients fluid resuscitation only
 • 40 patients single agent 38 NA – metaraminol 2
 • 2 patients dual agent NA/A or NA/V
 • 1 patient triple NA/A/V
• No association between number of sedatives in regimen and requirement for pressors/tropes
Haematology and Biochemistry on Admission to ICU

• HB range 70-215 (no statistical relationship to mortality)
• pH 6.81 - 7.56
 • 15/17 deaths had acidaemia pH <7.35 (statistical relationship to mortality)
 • No deaths in patients with alkalaemia or pH >7.4
• Temperature
 • <35 degrees Celsius on admission to ICU 7/12 patients died
 • <36 degrees 10/26 patients died
 • Normothermia 36-37.9 3/57 died
 • >38 2/9 died
Figure shows an identified association between body temperature and outcome, indicating with decreasing temperature from normothermic, a proportion of deceased patients increases linearly ($r^2=0.97$)

Analysis of pH on admission shows a linear trend ($r^2=0.9851$) with the proportion of patients with positive outcomes (discharge) decreasing with the rise in serum pH
Sedation

- 14 different regimens used for sedation in 89 patients

<table>
<thead>
<tr>
<th>Sedation Agent</th>
<th>Number patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>4</td>
</tr>
<tr>
<td>clonidine</td>
<td>2</td>
</tr>
<tr>
<td>morphine</td>
<td>1</td>
</tr>
<tr>
<td>propofol</td>
<td>1</td>
</tr>
<tr>
<td>fentanyl/propofol</td>
<td>12</td>
</tr>
<tr>
<td>morphine/midazolam</td>
<td>29</td>
</tr>
<tr>
<td>fentanyl/midazolam</td>
<td>12</td>
</tr>
<tr>
<td>morphine/midazolam/propofol</td>
<td>6</td>
</tr>
<tr>
<td>fentanyl/midazolam/morphine</td>
<td>6</td>
</tr>
<tr>
<td>fentanyl/morphine/propofol</td>
<td>1</td>
</tr>
<tr>
<td>fentanyl/midazolam/propofol</td>
<td>5</td>
</tr>
<tr>
<td>midazolam/morphine/ketamine</td>
<td>1</td>
</tr>
<tr>
<td>fentanyl/midazolam/ketamine</td>
<td>1</td>
</tr>
<tr>
<td>fentanyl/morphine/midazolam/propofol</td>
<td>2</td>
</tr>
<tr>
<td>fentanyl/midazolam/morphine/ketamine/propofol</td>
<td>3</td>
</tr>
</tbody>
</table>
Analgesic Doses for First v Second Debridement/Grafting Operations per patient

- A1: 240 mins
- A2: 200 mins
- B1: 180 mins
- B2: 380 mins
- C1: 260 mins
- C2: 190 mins
- D1: 370 mins
- D2: 250 mins

Colors:
- Blue: Fentanyl
- Orange: Morphine
- Gray: Ketamine
Comparison Intraoperative analgesia

Total Dose per operation

Dose mg/min per operation

p=0.0326

p=0.0085
Discharge Analgesia by Gender

No statistical significance of TBSA to Discharge Dose
Mean dose Males 24.3mg v Females 21.1mg
Discharge Analgesia – Previous Recreational drug use.

No Statistical Significance between previous drug users and non users in opiate prescribing 23.4mg v 21.4mg
Neuropathic Agents on Discharge

P value 0.024 male more likely to get some than none
P value 0.065 males get a greater dose of Lyrica
MRO screening for Burns Patients

• Currently all patients are screened on admission
• They are then screened routinely every Monday and Thursday.
• Each set of screening test costs $60.75
 • on top of any septic screening
• All burns patients are barrier nursed in single rooms – delivery of care is not affected by screening results
• Our unit has a nurse initiated system.
• 2010 Prevention and control if infection in healthcare (currently under review)
• ACSQHC in collaboration with the Introduction of National Guidelines for Surveillance – on admission and twice weekly
Number of Screening Tests per patient in RBH

- 401 tests performed in 93 patients
 - Number of new positive tests 2.5% (13 tests – 3 already known to be colonized)
- Mean number of tests per patient 4.35
- Frequency of testing 2.7 days
- Cost per test $60.17
- Total cost for the burns patients
 - $24,128 2 years,
 - $12,064/year
- Review of data
 - Some patients had 2 sets of swabs in a day
 - One patient 4 rectal VRE swabs in 3 days
 - V poor compliance with unit protocol
 - Long stay patients fell off the pathway, short stay patients had multiple screens
Microbiology

- 36 organisms

Gram +ve Cocci
- Staph Aureus MSSA
- Staph Aureus MRSA
- Staph Cromogenes
- Staph Epidermidis
- Staph Lugdenesis

Gram –ve Cocci
- Moraxella Catarrhalis

Gram +ve Bacilli
- Strep Pneumoniae
- Strep Salivarius
- Strep sanguinus
- Strep mitis
- Corynebacterium
- Egglethera Lenta
- Propionobacterium acnes
- Enterobacter aerogenes

Gram -ve Bacilli
- Klebsiella Oxytoca
- Klebsiella Pneumoniae
- Pseudomonas Aeruginosa
- Pseudomonas chloraraphis
- Pseudomonas putida
- Bacteroides stercolis
- Bacteroides thetaiotaomicron
- Bacteroides fragilis
- Enterobacter Cloaceae
- Aeromonas hydrophilia
- Serratia mascarens
- Hafnia Alvei
- Acinetobacter Baumannii
- E coli
- Citroebacter Freundii
- Coliforms
- Enterobacter Aerogenes
- Curvularia species
- Fusobacterium Necrophorum
Incidence and location

<table>
<thead>
<tr>
<th>Organism</th>
<th>Sputum</th>
<th>Blood</th>
<th>Urine</th>
<th>Wound</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph aureus MSSA</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>Klebsiella Pneumoniae</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Acinetobacter Baumannii</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Pseudomonas Aerogenes</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>H influenza</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Enterobacter Cloacae</td>
<td>7</td>
<td>5</td>
<td></td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Strep pneumoniae</td>
<td>7</td>
<td></td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Serratia Mascarens</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>E coli</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Proteus Mirabilis</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

All the rest had 1 positive test
Microbiology

• Respiratory tract infections
 • R/F for Resp infections include
 • Early endotracheal intubation *only controllable variable*
 • Unnecessary intubation may increase morbidity and mortality
 • Predictor of early onset Pneumonia – portal for contamination
 • Most patients had a gram negative on their admission ET aspirate
 • Inhalation injury
 • Associated with higher rates of pneumonia
 • The more severe the inhalation injury the higher the risk
 • lCan prolong intubation/ventilation and ICU LOS
Number of Organisms by Site per patient

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Sputum</th>
<th>Blood</th>
<th>Urine</th>
<th>Wound</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Organism</td>
<td>70</td>
<td>71</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1 Organism</td>
<td>28</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2 Organisms</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3 Organisms</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4 Organisms</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 Organisms</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6 Organisms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ESKAPE organisms

- Acinetobacter Baumannii (new species)
 - “Irakibacter”, homeless
 - “red alert” pathogen
 - 1 identified in PRC
- Targets moist tissues
 - MM
 - Skin
 - Initially “peau d’orange”
 - Later sandpaper
 - Vesicular
 - Hemorrhagic bullae
- Co pathogens
 - Klebsiella
 - Candida
 - Enterococcus faecalis
- Highest colonization
 - Axilla, groin and toe webs
- ICU increased risk
 - Intubation, dialysis, lines, antimicrobials
 - Biofilms on ET tubes and abiotic surfaces- glass

- Klebsiella pneumoniae
- MRSA
- Pseudomonas aeruginosa
- E coli

MRO by Site

- Sputum
- Blood
- Urine
- wound
- MRO
- E coli
<table>
<thead>
<tr>
<th>Discharge Antibiotics</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>53</td>
</tr>
<tr>
<td>Cipro/gent/tobramycin/vanc/piptaz/fluconazole</td>
<td>1</td>
</tr>
<tr>
<td>ceftriaxone</td>
<td>1</td>
</tr>
<tr>
<td>cefepime/vancomycin/gentamycin</td>
<td>1</td>
</tr>
<tr>
<td>Meropenem</td>
<td>1</td>
</tr>
<tr>
<td>cephazolin</td>
<td>1</td>
</tr>
<tr>
<td>ciprofloxacin/tobramycin/meropenem/piptaz</td>
<td>1</td>
</tr>
<tr>
<td>piptaz/vancomycin</td>
<td>2</td>
</tr>
<tr>
<td>ceftriaxone/vancomycin</td>
<td>1</td>
</tr>
<tr>
<td>flucloxacillin/ceftriaxone/piptaz</td>
<td>1</td>
</tr>
<tr>
<td>piperacillin/tazobactrim</td>
<td>1</td>
</tr>
<tr>
<td>fluconazole/piptaz</td>
<td>1</td>
</tr>
<tr>
<td>piptaz/lincomycin/vancomycin</td>
<td>1</td>
</tr>
<tr>
<td>fluconazole/piptaz/ceftriaxone</td>
<td>1</td>
</tr>
<tr>
<td>flucloxacillin/piptaz</td>
<td>1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1</td>
</tr>
<tr>
<td>Amikacin</td>
<td>1</td>
</tr>
<tr>
<td>Tigecycline/meropenem</td>
<td>1</td>
</tr>
<tr>
<td>lincomycin</td>
<td>1</td>
</tr>
<tr>
<td>lincomycin/piptaz</td>
<td>1</td>
</tr>
<tr>
<td>piptaz, cipro, moxifloxacin, vanc</td>
<td>1</td>
</tr>
<tr>
<td>colistin, tigecycline, flucloxacillin</td>
<td>1</td>
</tr>
</tbody>
</table>
In summary

• What are we doing well?
 • Survival rates – Only 7 patients died having active treatment.
 • LOS – Relatively short LOS
 • Retrieval. IHT have the same mortality as the direct admissions.

• What can we do better?
 • Standardization of analgesia, fluids, blood products, nutrition
 • Documentation of fluid resuscitation on admission

• Plan from here
 • Extend the audit to 5 years – low death rate meant it was hard to demonstrate statistical significance despite trends.
 • Present in our QI group and review our practice as a unit
 • Identify areas of further potential research